Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2.

BACKGROUND: Sterol regulatory element binding protein-2 (SREBP-2) is a membrane-bound transcription factor that upon proteolytic processing can activate the expression of genes involved in cholesterol biosynthesis and uptake. We as well as others have demonstrated that the accumulation of misfolded proteins within the endoplasmic reticulum (ER), a condition known as ER stress, can dysregulate lipid metabolism by activating the SREBPs. The purpose of this study was to determine the mechanism by which ER stress induces SREBP-2 activation.

METHODS AND RESULTS: HeLa and MCF7 cells were treated with ER stress-inducing agents to determine the effect of ER stress on SREBP-2 cleavage and subsequent cholesterol accumulation. Cells treated with thapsigargin (Tg) exhibit proteolytic cleavage of SREBP-2. Proteolytic cleavage of SREBP-2 induced by Tg occurred independently of caspase activation and was inhibited by the site-1 protease inhibitor AEBSF, suggesting that Tg-induced SREBP-2 cleavage occurs through the conventional site-1/-2 pathway. Treatment of HeLa cells with Tg also led to the accumulation of free cholesterol as measured by Filipin staining.

CONCLUSIONS: These results imply that ER stress-induced SREBP-2 activation occurs through the conventional pathway that normally regulates SREBP in accordance with intracellular sterol concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app