Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dose and time-dependent apoptotic effects by angiotensin II infusion on left ventricular cardiomyocytes.

OBJECTIVE: To gain insight into the regulation of cardiac apoptosis we studied the dose-response and time-course effects of angiotensin II (Ang II) infusion on ventricular cardiomyocyte apoptosis and on the expression of Bax and Bcl-2 genes and proteins.

STUDY DESIGN AND METHODS: In the dose-response study, Ang II was infused subcutaneously at doses of 100, 200, 400, 800 and 1200 ng/kg per min for 14 days. In the time-course study, rats infused with Ang II at doses of 200 and 400 ng/kg per min were followed for 7 and 14 days. The cardiomyocyte apoptotic density was assessed by DNA end labelling (terminal deoxynucleotide nick-end labelling; TUNEL). Gene and protein expression of Bcl-2 and Bax were evaluated by reverse transcriptase-polymerase chain reaction and by Western blots.

RESULTS: Systolic blood pressure and left ventricular mass were increased in a dose-dependent manner in Ang II-infused rats. A statistically significant increase in the rate of cardiac apoptosis and pro-apoptotic changes of Bcl-2 and Bax gene and protein expression was observed when high doses of Ang II (800-1200 ng/kg per min) were infused. A positive correlation of apoptotic density with Bax and a negative correlation with Bcl-2 and Bcl-2/Bax ratio were found. Cardiac apoptosis was greatly influenced by the timing of Ang II infusion. Losartan-treated Ang II-infused rats exhibited normalized systolic blood pressure, left ventricular weight, apoptosis, and Bax and Bcl-2 levels.

CONCLUSIONS: Our results are consistent with the pathophysiological role of Ang II in induction of cardiac apoptosis, and explain the cardioprotective effect of Ang II receptor antagonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app