Add like
Add dislike
Add to saved papers

Evaluation of tablet formation of different lactoses by 3D modeling and fractal analysis.

The aim of this study was to use 3D modeling to differentiate not only among the four different types of lactose alpha-lactose monohydrate, spray-dried lactose, agglomerated lactose and lactose anhydrous but also between products from different manufacturers. Further "box-counting" fractal analysis of SEM images was done to gain additional information on tableting characteristics and tablet properties which can be found in the fractal structure. Twelve different materials from different manufacturers were analyzed for their powder-technological and physicochemical properties. They were tableted on an eccentric tableting machine at graded maximum relative densities and the recorded data, namely force, time, and displacement were analyzed by the 3D modeling technique. Tablet properties such as, elastic recovery, crushing force and morphology were analyzed. The results show that 3D modeling can precisely distinguish deformation behavior for different types of lactose and also for the same type of material produced with a slightly different technique. Furthermore, the results showed that the amorphous content of the lactose determined the compactibility of the material, which is due to a reversible exceeding of the glass transition temperature of the material. The three fractal dimensions DBW (box surface dimension), DWBW (pore/void box mass dimension), and DBBW (box solid mass dimension) are capable of describing morphological differences in lactose materials. Multivariate regression analysis showed that the fractal surface structure of the lactose-based materials is strongly correlated to tableting characteristics and tablet properties. Especially with regards to 3D modeling, it was found that the fractal indices can describe the parameters time plasticity d, pressure plasticity e, and fast elastic decompression, which is the inverse of omega. In addition, the 3D parameters are able to describe the powder and tablet fractal indices. In conclusion, the 3D modeling is not only able to characterize the compression process but it can also provide information on the final tablet morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app