Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differentiation of dental pulp stem cells into regular-shaped dentin-pulp complex induced by tooth germ cell conditioned medium.

Tissue Engineering 2006 November
Investigations of the odontoblast phenotype are hindered by obstacles such as the limited number of odontoblasts within the dental pulp and the difficulty in purification of these cells. Therefore, it is necessary to develop a cell culture system in which the local environment is inductive and can promote dental pulp stem cells (DPSCs) to differentiate into odontoblast lineage. In this study, we investigated the effect of conditioned medium from developing tooth germ cells (TGCs) on the differentiation and dentinogenesis of DPSCs both in vitro and in vivo. DPSCs were enzymatically isolated from the lower incisors of 4-week-old Sprague-Dawley rats and co-cultured with TGC conditioned medium (TGC-CM). The cell phenotype of induced DPSCs presents many features of odontoblasts, as assessed by the morphologic appearance, cell cycle modification, increased alkaline phosphatase level, synthesis of dentin sialoprotein, type I collagen and several other noncollagenous proteins, expression of the dentin sialophosphoprotein and dentin matrix protein 1 genes, and the formation of mineralized nodules in vitro. The induced DPSC pellets in vivo generated a regular-shaped dentin-pulp complex containing distinct dentinal tubules and predentin, while untreated pellets spontaneously differentiated into bone-like tissues. To our knowledge, this is the first study to mimic the dentinogenic microenvironment from TGCs in vitro, and our data suggest that TGC-CM creates the most odontogenic microenvironment, a feature essential and effective for the regular dentinogenesis mediated by DPSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app