Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks.

It is commonly assumed that somatic evolution drives the multi-step process that produces metastatic cancer. But it is difficult to reconcile the inexorable progression towards metastasis in virtually all carcinomas and the associated complex change of cancer cell phenotype, characterized by an epithelial-to-mesenchymal transition, with the random nature of gene mutations. Given their irreversible nature, it is also difficult to explain why certain metastatic carcinomas can reform normal tissue boundaries and remain dormant for years at distant sites. Here we propose an encompassing conceptual framework based on system-level dynamics of gene regulatory networks that may help reconcile these inconsistencies. The concepts of gene expression state space and attractors are introduced which provide a mathematical and molecular basis for an "epigenetic landscape". We then describe how cancer cells are trapped in "embryonic attractors" because of distortions of this landscape caused by mutational rewiring of the regulatory network. The implications of this concept for a new integrative understanding of tumor formation and metastatic progression are discussed. This formal framework of cancer progression unites mainstream genetic determinism with alternative ideas that emphasize non-genetic influences, including chronic growth stimulation,extracellular matrix remodeling, alteration of cell mechanics and disruption of tissue architecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app