Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanism of vascular endothelial growth factor expression mediated by cisplatin in human ovarian cancer cells.

Cisplatin (CDDP) and its analogues are widely used for the treatment of a variety of human solid tumors. However, the molecular mechanism of its action remains to be understood. Vascular endothelial growth factor (VEGF) is a potent inducer of angiogenesis and is upregulated in many human cancers. In this study we demonstrated that CDDP-inhibited VEGF expression in human ovarian cancer cells. We found that CDDP inhibited the VEGF reporter activity in a dose-dependent manner, indicating that CDDP-inhibited transcriptional activation of VEGF. We also found that: (1) luciferase activity mediated by the VEGF reporter containing a mutation of the HIF-1 binding site was much lower than that of the reporter containing a wild-type HIF-1 binding site in ovarian cancer cells, thus confirming that HIF-1 is a major transcriptional regulator of VEGF expression; and that (2) CDDP greatly inhibited VEGF reporter activity containing the wild-type but not the mutant HIF-1 binding site. This result indicates that CDDP-inhibited VEGF transcriptional activation specifically by decreasing HIF-1 activity. Co-transfection of a dominant negative construct of HIF-1 inhibited VEGF reporter activity in ovarian cancer cells. CDDP-inhibited VEGF transcriptional activation specifically through the expression of HIF-1alpha, but not HIF-1beta. We demonstrated that VEGF receptor KDR was expressed in ovarian cancer cells, and that CDDP-inhibited VEGF expression was linked with cellular apoptosis, which was rescued by VEGF treatment. These results suggest a novel mechanism of CDDP's anti-tumor activity in ovarian cancer cells via HIF-1 expression and VEGF transcriptional activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app