Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice.

Jasmonic acid (JA) is a well-known defence hormone, but its biological function and mechanism in rice root development are less understood. Here, we describe a JA-induced putative receptor-like protein (OsRLK, AAL87185) functioning in root development in rice. RNA in situ hybridization revealed that the gene was expressed largely in roots, and a fusion protein showed its localization on the plasma membrane. The primary roots in RNAi transgenic rice plants meandered and curled more easily than wild-type (WT) roots under JA treatment. Thus, this gene was renamed Oryza sativa root meander curling (OsRMC). The transgenic primary roots were shorter, the number of adventitious roots increased and the number of lateral roots decreased as compared to the WT. As well, the second sheath was reduced in length. Growth of both primary roots and second sheaths was sensitive to JA treatment. No significant change of JA level appeared in the roots between the transgenic rice line and WT. Expression of RSOsPR10, involved in the JA signalling pathway, was induced in transgenic rice. Western blotting revealed OsRMC induced by JA. Our results suggest that OsRMC of the DUF26 subfamily involved in JA signal transduction mediates root development and negatively regulates root curling in rice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app