Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Atorvastatin partially prevents an inflammatory barrier breakdown of cultured human brain endothelial cells at a pharmacologically relevant concentration.

3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (i.e. statins) are currently under clinical investigation as a prophylactic immunomodulatory treatment for neurological diseases where an inflammatory disruption of the blood-brain barrier plays a pathogenic role. Here, we investigated whether atorvastatin pre-treatment modulates inflammatory-induced barrier dysfunction of cultured human brain microvascular endothelial cells (HBMEC). Pre-treatment of immortalized HBMEC with atorvastatin (50 nmol/L to 1 micromol/L) dose-dependently prevented an inflammatory up-regulation of monocyte chemoattractant protein-1/CCL2 but not of interleukin-8/CXCL8 and intercellular adhesion molecule-1 expression by tumor necrosis factor-alpha or interleukin-1beta. It antagonized an inflammatory up-regulation of claudin-3 expression while zonula occludens-1 and occludin protein levels remained unaltered. Like immortalized HBMEC, primary HBMEC also showed a reduction of claudin-3 and of inducible CCL2 expression following atorvastatin pre-treatment. On a functional level, atorvastatin pre-treatment of HBMEC strongly and dose-dependently reduced adhesion of activated T lymphocytes to pre-activated primary endothelium. Atorvastatin effects could partially be abolished by parallel mevalonate treatment. These anti-inflammatory effects of atorvastatin were observed already at a pharmacologically relevant concentration of 50 nmol/L. Our results obtained with human brain endothelial cells demonstrate how statins may partially prevent an inflammatory-mediated blood-brain barrier breakdown in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app