Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Garenoxacin activity against isolates form patients hospitalized with community-acquired pneumonia and multidrug-resistant Streptococcus pneumoniae.

Community-acquired pneumonia (CAP) continues to cause significant morbidity worldwide, and the principal bacterial pathogens (Streptococcus pneumoniae and Haemophilus influenzae) have acquired numerous resistance mechanisms over the last few decades. CAP treatment guidelines have suggested the use of broader spectrum agents, such as antipneumococcal fluoroquinolones as the therapy for at-risk patient population. In this report, we studied 3087 CAP isolates from the SENTRY Antimicrobial Surveillance Program (1999-2005) worldwide and all respiratory tract infection (RTI) isolate population of pneumococci (14665 strains) grouped by antibiogram patterns against a new des-F(6)-quinolone, garenoxacin. Results indicated that garenoxacin was highly active against CAP isolates of S. pneumoniae (MIC(90), 0.06 microg/mL) and H. influenzae (MIC(90), < or =0.03 microg/mL). This garenoxacin potency was 8- to 32-fold greater than gatifloxacin, levofloxacin, and ciprofloxacin against the pneumococci and >99.9% of strains were inhibited at < or =1 microg/mL (proposed susceptible breakpoint). Garenoxacin MIC values were not affected by resistances among S. pneumoniae strains to penicillin or erythromycin; however, coresistances were high among the beta-lactams (penicillins and cephalosporins), macrolides, tetracyclines, and trimethoprim/sulfamethoxazole. Analysis of S. pneumoniae isolates with various antimicrobial resistance patterns to 6 drug classes demonstrated that garenoxacin was active against >99.9% (MIC, < or =1 microg/mL) of strains, and the most resistant pneumococci (6-drug resistance, 1051 strains or 7.2% of all isolates) were completely susceptible (100.0% at < or =1 microg/mL) to garenoxacin (MIC(90), 0.06 microg/mL). These results illustrate the high activity of garenoxacin against contemporary CAP isolates and especially against multidrug-resistant (MDR) S. pneumoniae that have created therapeutic dilemmas for all RTI presentations. Garenoxacin appears to be a welcome addition to the CAP treatment options, particularly for the emerging MDR pneumococci strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app