Arginine vasopressin as a supplementary vasopressor in refractory hypertensive, hypervolemic, hemodilutional therapy in subarachnoid hemorrhage

Susanne Muehlschlegel, Martin W Dunser, Andrea Gabrielli, Volker Wenzel, A Joseph Layon
Neurocritical Care 2007, 6 (1): 3-10

INTRODUCTION: Hypertensive, hypervolemic, and hemodilutional (HHH) therapy for vasospasm in subarachnoid hemorrhage (SAH) refractory to phenylephrine requires high doses of catecholamines, leading to adverse adrenergic effects. Arginine vasopressin (AVP) has been shown to stabilize advanced shock states while facilitating reduction of catecholamine doses, but its use has never been reported in SAH. In this retrospective study, we investigated the hemodynamic effects and feasibility of supplementary AVP in refractory HHH therapy in SAH.

METHODS: Hemodynamic response (mean arterial pressure [MAP], heart rate, central venous pressure, cardiac index, systemic vascular resistance index, and end diastolic volume index) to a supplementary AVP infusion (0.01-0.04 IU/minute) was recorded within the first 24 hours in 22 patients. Secondary endpoints (serum sodium concentration, incidence of vasospasm, and intracranial pressure [ICP]) were compared to controls on HHH therapy with phenylephrine alone.

RESULTS: After initiation of AVP, MAP increased significantly compared to baseline. Phenylephrine doses decreased significantly, whereas other hemodynamic parameters remained stable. Serum sodium concentrations decreased similarly in both groups (-5 +/- 7 mmol/L versus -6 +/- 4 mmol/L; p = 0.25). No detrimental effects on vasospasm incidence or ICP and cerebral perfusion pressure were noted.

CONCLUSION: AVP may be considered as an alternative supplementary vasopressor in refractory HHH therapy with phenylephrine in SAH. Although we did not observe any deleterious effect of AVP on cerebral circulation, close observation for development of cerebral vasospasm should be undertaken, until it is clearly demonstrated that AVP has no adverse effects on regional cerebral blood flow and symptomatic cerebral vasospasm. Our limited data suggest that low-dose AVP does not cause brain edema, but further study is merited.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"

We want to hear from doctors like you!

Take a second to answer a survey question.