Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Induction of transforming growth factor-beta1 by basic fibroblast growth factor in rat C6 glioma cells and astrocytes is mediated by MEK/ERK signaling and AP-1 activation.

Basic fibroblast growth factor (bFGF) and transforming growth factor-beta1 (TGF-beta1) play an important role in proliferation, differentiation, and survival of malignant gliomas and in normal glial cell biology. Because of these critical roles, potential interactions between these key growth factors were investigated. We previously demonstrated that bFGF potently stimulates TGF-beta1 release from rat glioma cells. The purpose of the present study was to elucidate the mechanism(s) of this regulatory effect, establish its functional importance, and examine whether it extends to nontransformed rat hypothalamic astrocytes (RHA). The results revealed that RHA express the high-affinity FGF(1-4) receptors, and similarly to glioma cells, bFGF stimulated TGF-beta1 release in an isoform-specific manner. A mediatory role for ERK signaling in bFGF-induced TGF-beta release was suggested by the fact that MEK1 inhibition prevented this effect. Additionally, bFGF enhanced MEK1/2 phosphorylation and ERK activation/nuclear translocation, which culminated in increased activity of AP-1-mediated gene transcription. bFGF markedly induced TGF-beta1 mRNA levels in an isoform-specific manner, an effect that was dependent on MEK/ERK/AP-1 signaling. Functionally, bFGF-induced proliferation of glioma cells was attenuated by MEK/ERK inhibition or immunoneutralization of TGF-beta1, suggesting that this pathway may have important implications for brain tumor progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app