JOURNAL ARTICLE

Role of iNOS-derived reactive nitrogen species and resultant nitrative stress in leukocytes-induced cardiomyocyte apoptosis after myocardial ischemia/reperfusion

Xiao-Liang Wang, Hui-Rong Liu, Lin Tao, Feng Liang, Li Yan, Rong-Rui Zhao, Bernard L Lopez, Theodore A Christopher, Xin-Liang Ma
Apoptosis: An International Journal on Programmed Cell Death 2007, 12 (7): 1209-17
17333318
Polymorphonuclear leukocyte (PMN) accumulation/activation has been implicated as a primary mechanism underlying MI/R injury. Recent studies have demonstrated that PMNs express inducible nitric oxide synthase (iNOS) and produce toxic reactive nitrogen species (RNS). However, the role of iNOS-derived reactive nitrogen species and resultant nitrative stress in PMN-induced cardiomyocyte apoptosis after MI/R remains unclear. Male adult rats were subjected to 30 min of myocardial ischemia followed by 5 h of reperfusion. Animals were randomized to receive one of the following treatments: MI/R+vehicle; MI/R+L-arginine; PMN depletion followed by MI/R+vehicle; PMN depletion followed by MI/R+L-arginine; MI/R+1400 W; MI/R+1400 W+L-arginine and MI/R+ FeTMPyP. Ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis were determined. PMN depletion virtually abolished ischemia/reperfusion- induced PMN accumulation, attenuated ischemic/reperfusion-induced and L-arginine-enhanced nitrative stress, and reduced ischemic/reperfusion-induced and L-arginine-enhanced cardiomyocyte apoptosis (P values all <0.01). Pre-treatment with 1400 W, a highly selective iNOS inhibitor, had no effect on PMN accumulation in the ischemic/reperfused tissue. However, this treatment reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis to an extent that is comparable as that seen in PMN depletion group. Treatment with FeTMPyP, a peroxynitrite decomposition catalyst, had no effect on either PMN accumulation or total NO production. However, treatment with this ONOO(-) decomposition catalyst also reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis (P values all <0.01). These results demonstrated that ischemic/reperfusion stimulated PMN accumulation may result in cardiomyocyte injury by an iNOS-derived nitric oxide initiated and peroxynitrite-mediated mechanism. Therapeutic interventions that block PMN accumulation, inhibit iNOS activity or scavenge peroxynitrite may reduce nitrative stress and attenuate tissue injury.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17333318
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"