Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of TGF-beta1, TbetaRII and Smad4 in colorectal carcinoma.

BACKGROUND: Many colorectal carcinomas are resistant to the growth inhibitory response of transforming growth factor-beta (TGF-beta) due to alterations of components along the TGF-beta signaling pathway. The aim of this study was to examine the expression of TGF-beta1, TbetaRII and Smad4 in human colorectal carcinoma and their relationships with cancer growth.

METHODS: Immunohistochemistry and in situ hybridization were performed in 38 cases of colorectal carcinoma.

RESULTS: Intense signal for TGF-beta1 protein and TGF-beta1 mRNA were found in 71.1% (27/38) and 77.8% (21/27) of colorectal carcinoma, respectively. Intensive TbetaRII mRNA were detected only in 40% (11/27) cancer tissues (p<0.05). 65.8% (25/38) of colorectal carcinoma displayed decreased expression in TbetaRII immunoreactivity staining (p<0.05). Smad4 protein and Smad4 mRNA were reduced in 63.2% (24/38) and 63% (17/27) of tumors, respectively. Smad4 expression was related to tumor differentiation and Duke's stage (p<0.05). Furthermore, TGF-beta1-positive tumors with lymph node metastasis preferentially had significant reduced Smad4 expression (p<0.05).

CONCLUSIONS: Down-regulation of TbetaRII as well as the over-expression of TGF-beta1 play a possible role for the escape of colorectal carcinoma from TGF-beta-mediated growth inhibition. Reduced Smad4 is associated with malignancy and progression of colorectal carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app