Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multileaf field-in-field forward-planned intensity-modulated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a phantom model comparison.

PURPOSE: Static multileaf collimated field-in-field forward-planned intensity-modulated radiation treatment (FiF-IMRT) has been shown to improve dose homogeneity compared to conventional wedged fields. However, a direct comparison of the scattered dose to the contralateral breast resulting from wedged and FiF-IMRT plans remains to be documented.

METHODS: The contralateral scattered breast dose was measured in a custom-designed anthropomorphic breast phantom in which 108 thermoluminescent dosimeters (TLDs) were volumetrically placed every 1-2cm. The target phantom breast was treated to a dose of 50Gy using three dose compensation techniques: No medial wedge and a 30-degree lateral wedge (M0-L30), 15-degree lateral and medial wedges (M15-L15), and FiF-IMRT. TLD measurements were compared using analysis of variance.

RESULTS: For FiF-IMRT, the mean doses to the medial and lateral quadrants of the contralateral breast were 112cGy (range 65-226cGy) and 40cGy (range 18-91 cGy), respectively. The contralateral breast doses with FiF-IMRT were on average 65% and 82% of the doses obtained with the M15-L15 and M0-L30 techniques, respectively (p<0.001). Compared to the M15-L15 technique, the maximum dose reduction obtained with FiF-IMRT was 115cGy (range 13-115cGy).

CONCLUSIONS: The dose to the contralateral breast is significantly reduced with FiF-IMRT compared to wedge-compensated techniques. Although long-term follow-up is needed to establish the clinical relevance of this finding, these results, along with the previously reported improvement in ipsilateral dose homogeneity, support the use of FiF-IMRT if resources permit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app