Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Region-specific changes in the phosphorylation of ERK1/2 and ERK5 in rat micturition pathways following cyclophosphamide-induced cystitis.

Chronic inflammation of the urinary bladder generates hyperalgesia and allodynia. Growing evidence suggests a role of ERK in mediating somatic and visceral pain processing. In the present studies, we characterized and compared the activation of two ERK isoforms, ERK1/2 and ERK5, in micturition pathways, including the urinary bladder, lumbosacral dorsal root ganglia (DRG), and spinal cord in adult female and male rats before and after cyclophosphamide (CYP)-induced bladder inflammation. Results showed differential activation of ERK1/2 and ERK5 in these regions following cystitis. The level of phospho-ERK1/2 but not phospho-ERK5 was increased in the urinary bladder; the level of phospho-ERK5 but not phospho-ERK1/2 was increased in DRG; and the level of phospho-ERK1/2 but not phospho-ERK5 was increased in lumbar spinal cord following cystitis compared with control. Cystitis-induced upregulation of phospho-ERK1/2 and phospho-ERK5 was time dependent and showed similar patterns in female and male rats. The level of phospho-ERK1/2 in bladder was increased at 2 and 8 h after CYP injection; the level of phospho-ERK5 in DRG was increased at 8 and 48 h after CYP injection; and the level of phospho-ERK1/2 in lumbar spinal cord was increased at 48 h after CYP injection. The result that phospho-ERK5 was exclusively increased in DRG neurons, while phospho-ERK1/2 was increased in the spinal cord and the urinary bladder after cystitis, suggests a region-specific effect of neurotrophins on micturition pathways following bladder inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app