Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis.

Gibberellins (GAs) are important plant growth regulators, regulating many plant developmental processes, including seed germination, root and stem elongation, rosette expansion, floral induction and anther development. The diverse effects of GAs on plant development make it critical to maintain an appropriate endogenous GA level and a fine-tuned GA signalling. Some global regulators in GA signalling have been identified but little is known about genes specifically involved in local implementation of GA signalling. Here we report that the Arabidopsis thaliana SBP-box gene SQUAMOSA-PROMOTER-BINDING-PROTEIN-LIKE8 (SPL8) acts as a local regulator in a subset of GA-dependent developmental processes. Previous knowledge holds that SPL8 is involved in reproductive development as deduced from its loss-of-function phenotype (Unte et al. (2003) Plant Cell 15:1009-1019). We now determined that constitutive overexpression of SPL8 affects fertility due to non-dehiscent anthers, likely resulting from a constitutive GA response, suggesting a positive role of SPL8 in GA-mediated anther development. On the other hand, SPL8 gain- and loss-of-function mutants showed opposite responses to GA and its biosynthetic inhibitor paclobutrazol (PAC) with respect to seed germination and root elongation during the seedling stage. Genes involved in GA biosynthesis and signalling are transcriptionally affected by altered SPL8 expression. Our study uncovered a tissue-dependent regulatory role for SPL8 in the response to GA signalling in plant development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app