Add like
Add dislike
Add to saved papers

Effects of baseline metabolic rate on pulmonary O2 uptake on-kinetics during heavy-intensity exercise in humans.

We hypothesised that initiating heavy-intensity exercise from an elevated baseline metabolic rate would result in slower Phase II O2 uptake V(O2) kinetics and a greater overall 'gain' in V(O2) per unit increase in work rate. Seven healthy males performed a series of like-transitions on a cycle ergometer: (1) from light exercise to 'moderate' exercise (80% of the gas exchange threshold, GET; L-->M); (2) from light exercise to 'heavy' exercise (40% of the difference between GET and V(O2) peak; L-->H); (3) from moderate exercise to heavy exercise (M-->H). The Phase II time constant (tau) was significantly (P<0.01) greater in the M-->H condition (48+/-11 s) compared to the L-->M and L-->H conditions (26+/-6 s versus 27+/-4 s, respectively). Moreover, the end-exercise 'gain' values were significantly different between the three conditions (L-->M, 8.1+/-0.7 mL min-1 W-1; L-->H, 9.7+/-0.4 mL min-1 W-1; M-->H, 10.7+/-0.7 mL min-1 W-1; P<0.05). This 'non-linearity' in the pulmonary V(O2) response to exercise might be attributed, at least in part, to differences in the metabolic properties of the muscle fibres recruited in the abrupt transition from a lower to a higher work rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app