DNA topoisomerase IIalpha (TOP2A) inhibitors up-regulate fatty acid synthase gene expression in SK-Br3 breast cancer cells: in vitro evidence for a 'functional amplicon' involving FAS, Her-2/neu and TOP2A genes

Javier A Menendez, Luciano Vellon, Ruth Lupu
International Journal of Molecular Medicine 2006, 18 (6): 1081-7
Fatty acid synthase (FAS), the key metabolic multi-enzyme that is responsible for the terminal catalytic step in the de novo fatty acid biosynthesis, plays an active role in the development, maintenance, and enhancement of the malignant phenotype in a subset of breast carcinomas. We recently described that a molecular bi-directional cross-talk between FAS and the Her-2/neu (erbB-2) oncogene is taking place at the level of transcription, translation, and activity in breast cancer cells. Because Her-2/neu has been linked with altered sensitivity to cytotoxic drugs, we envisioned that FAS gene expression may represent a novel predictive molecular factor for breast cancer response to chemotherapy in a Her-2/neu-related manner. We herein evaluated whether chemotherapy-induced cell damage acts in an epigenetic fashion by inducing changes in the transcriptional activation of FAS gene in breast cancer cells. To evaluate this option, FAS- and Her-2/neu-overexpressing SK-Br3 breast cancer cells were transiently transfected with a FAS promoter-reporter construct (FAS-Luciferase) harboring all the elements necessary for high level expression in cancer cells. SK-Br3 cells cultured in the presence of topoisomerase IIalpha (TOP2A) inhibitors doxorubicin and etopoxide (VP-16) demonstrated a 2- to 3-fold increase in FAS promoter activity when compared with control cells growing in drug-free culture conditions. We failed to observe any significant activation of FAS promoter following exposure to the anti-metabolite 5-fluorouracil, the alkylating drug cisplatin, or the microtubule interfering-agents paclitaxel and vincristine. Moreover, the up-regulatory effects of TOP2A inhibitors on the transcriptional activation of FAS gene expression were not significantly decreased when the FAS promoter was damaged at the sterol regulatory element binding protein (SREBP)-binding site. Considering that FAS inhibition produces profound inhibition of DNA replication and S-phase progression in cancer cells, we finally asked whether a cross-talk between TOP2A and FAS could exhibit a Her-2/neu-related bi-directional nature. TOP2A protein levels were decreased during treatment with the anti-Her-2/neu antibody trastuzumab while, concomitantly, FAS promoter activity and FAS protein expression were significantly reduced. Of note, when the expression levels of TOP2A protein were analyzed following exposure of SK-Br3 cells to increasing concentrations of the novel slow-binding FAS inhibitor C75, a dose-dependent reduction in TOP2A expression was observed. Although FAS gene is not physically located in the Her-2/neu-TOP2A amplicon, our present findings strongly suggest that a tight functional association between FAS, Her-2/neu and TOP2A genes is taking place in a subset of breast carcinoma cells.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"