JOURNAL ARTICLE

Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1alpha

Seung-Hun Cha, Joseph T Rodgers, Pere Puigserver, Shigeru Chohnan, M Daniel Lane
Proceedings of the National Academy of Sciences of the United States of America 2006 October 17, 103 (42): 15410-5
17030788
Previous investigations show that intracerebroventricular administration of a potent inhibitor of fatty acid synthase, C75, increases the level of its substrate, malonyl-CoA, in the hypothalamus. The "malonyl-CoA signal" is rapidly transmitted to skeletal muscle by the sympathetic nervous system, increasing fatty acid oxidation, uncoupling protein-3 (UCP3) expression, and thus, energy expenditure. Here, we show that intracerebroventricular or intraperitoneal administration of C75 increases the number of mitochondria in white and red (soleus) skeletal muscle. Consistent with signal transmission from the hypothalamus by the sympathetic nervous system, centrally administered C75 rapidly (< or =2 h) up-regulated the expression (in skeletal muscle) of the beta-adrenergic signaling molecules, i.e., norepinephrine, beta3-adrenergic receptor, and cAMP; the transcriptional regulators peroxisomal proliferator activator regulator gamma coactivator 1alpha (PGC-1alpha) and estrogen receptor-related receptor alpha (ERRalpha); and the expression of key oxidative mitochondrial enzymes, including pyruvate dehydrogenase kinase, medium-chain length fatty acyl-CoA dehydrogenase, ubiquinone-cytochrome c reductase, cytochrome oxidase, as well as ATP synthase and UCP3. The role of PGC-1alpha in mediating these responses in muscle was assessed with C2C12 myocytes in cell culture. Consistent with the in vivo response, adenovirus-directed expression of PGC-1alpha in C2C12 muscle cells provoked the phosphorylation/inactivation and reduced expression of acetyl-CoA carboxylase 2, causing a reduction of the malonyl-CoA concentration. These effects, coupled with an increased carnitine palmitoyltransferase 1b, led to increased fatty acid oxidation. PGC-1alpha also increased the expression of ERRalpha, PPARalpha, and enzymes that support mitochondrial fatty acid oxidation, ATP synthesis, and thermogenesis, apparently mediated by an increased expression of UCP3.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17030788
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"