Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Energetics of cytosine singlet excited-state decay paths--a difficult case for CASSCF and CASPT2.

Three deactivation paths for singlet excited cytosine are calculated at the CASPT2//CASSCF (complete active space second-order perturbation//complete active space self-consistent field) level of theory, using extended active spaces that allow for a reliable characterization of the paths and their energies. The lowest energy path, with a barrier of approximately 0.1 eV, corresponds to torsion of the C5-C6 bond, and the decay takes place at a conical intersection analogous to the one found for ethylene and its derivatives. There is a further path with a low energy barrier of approximately 0.2 eV associated with the (n(N),pi*) state which could also be populated with a low energy excitation. The path associated with a conical intersection between the ground and (n(O),pi*) states is significantly higher in energy (> 1 eV). The presence of minima on the potential energy surface for the (n,pi*) states that could contribute to the biexponential decay found in the gas phase was investigated, but could not be established unequivocally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app