Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Constitutive nitric oxide acting as a possible intercellular signaling molecule in the initiation of radiation-induced DNA double strand breaks in non-irradiated bystander cells.

Oncogene 2007 April 6
The initiation and propagation of the early processes of bystander signaling induced by low-dose alpha-particle irradiation are very important for understanding the underlying mechanism of the bystander process. Our previous investigation showed that the medium collected from cell culture exposed to low-dose alpha-particle rapidly induced phosphorylated form of H2AX protein foci formation among the non-irradiated medium receptor cells in a time-dependent manner. Using N(G)-methyl-L-arginine, 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and N(omega)-nitro-L-arginine (L-NNA) treatment before exposure to 1 cGy alpha-particle, we showed in the present study that nitric oxide (NO(*)) produced in the irradiated cells was important and necessary for the DNA double strand break inducing activity (DIA) of conditioned medium and the generation of NO(*) in irradiated confluent AG1522 cells is in a time-dependent manner and that almost all NO(*) was generated within 15 min post-irradiation. Concurrently, the kinetics of NO(*) production in the medium of irradiated cells after irradiation was rapid and in a time-dependent manner as well, with a maximum yield observed at 10 min after irradiation with electron spin resonance analysis. Furthermore, our results that 7-Nitroindazole and L-NNA, but not aminoguanidine hemisulfate, treatment before exposure to 1 cGy alpha-particle significantly decrease the DIA of the conditioned medium suggested that constitutive NO(*) from the irradiated cells possibly acted as an intercellular signaling molecule to initiate and activate the early process (

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app