Add like
Add dislike
Add to saved papers

Walking speed influences on gait cycle variability.

Gait & Posture 2007 June
The purpose of this study was to investigate the influence of walking speed on the amount and structure of the stride-to-stride fluctuations of the gait cycle. Based on previous findings for both walking [Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 1996;80:1448-57], and running [Jordan K, Challis JH, Newell KM. Long range correlations in the stride interval of running. Gait Posture 2006;24:120-5] it was hypothesized that the fractal nature of human locomotion is a reflection of the attractor dynamics of human locomotion. Female participants walked for 12min trials at 80%, 90%, 100%, 110% and 120% of their preferred walking speed. Eight gait cycle variables were investigated: stride interval and length, step interval and length, and from the vertical ground reaction force profile the impulse, first and second peak forces, and the trough force. Detrended fluctuation analysis (DFA) revealed the presence of long range correlations in all gait cycle variables investigated. Speed related U-shaped functions occurred in five of the eight variables, with the minima of these curves falling between 100% and 110% of the preferred walking speed. These findings are consistent with those previously shown in running studies and support the hypothesis that reduced strength of long range correlations at preferred locomotion speeds is reflective of enhanced stability and adaptability at these speeds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app