Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Domain requirements for an endocytosis-independent, isoform-specific function of dynamin-2.

Endocytosis is inhibited by overexpression of either dynamin-1 or dynamin-2 mutants because both isoforms form heterotetramers with endogenous dynamin-2 and interfere with its function. By contrast, other phenotypes, which are specifically triggered by overexpression of dynamin-2, but not dynamin-1 are likely to reflect endocytosis-independent, dynamin-2-specific functions and/or interactions. Using Dyn2/Dyn1 chimeras, we explored the structural requirements for a readily quantifiable, isoform-specific function of dynamin-2, the activation of caspase-3 to trigger apoptosis. Strikingly, swapping the highly homologous GTPase domain of dynamin-2 into dynamin-1 was sufficient to confer caspase-3 activation. Moreover, assembly-defective mutations in GED, dynamin's GAP/assembly domain, that inhibit endocytosis enhance caspase-3 activation. Thus, this dynamin-2-specific function is mechanistically distinct from and independent of its role in endocytosis. These findings have important implications for interpreting dynamin-2 dependent phenotypes in overexpression studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app