Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat.

Elevations in angiotensin II (AngII) and transforming growth factor (TGF-beta1) levels are often found under conditions leading to progression of heart failure. From several studies, it is evident that AngII enhances TGF-beta1 expression via activator protein 1 (AP-1) activation, and that this pathway is involved in hypertrophic growth of the heart muscle and in the development of cardiac fibrosis. We now continued characterization of the signaling pathway stimulated by AngII in ventricular cardiomyocytes of rat and analyzed if the enhancement of TGF-beta1 expression by AngII may also contribute to apoptosis induction, which is another predictor of heart failure progression. Stimulation of cardiomyocytes with 100 nM AngII for 2 h activated the transcription factors AP-1 and GATA by 68.6+/-23.9 or 70.7+/-9.8%. Induction of both factors was mediated by p38 mitogen-activated protein kinase (MAPK) because it was totally blocked using a specific inhibitor of the kinase (SB202190). When GATA was inhibited by transformation of cardiomyocytes with decoy oligonucleotides, AngII could not enhance TGF-beta1 expression. This inhibition was observed on the mRNA level in real-time polymerase chain reaction and on the protein level in Western blots. As a consequence, upon AngII stimulation for 24 h, release of TGF-beta1 from cardiomyocytes was also reduced from 240.5+/-50.4 to 130.5+/-22.1% (p<0.05). In contrast to the early induction of GATA and AP-1, the transcription factor similar to mothers against decapentaplegic homolog (SMAD) was induced by AngII after 24 h. This stimulation was dependent on TGF-beta1 because it was blocked by antibodies specific for TGF-beta1. Twenty-four hours after AngII addition, the number of apoptotic cardiomyocytes increased by 6.5+/-1.2%, and this apoptosis induction was blocked when SMAD activity was inhibited by transformation of cardiomyocytes with SMAD decoy oligonucleotides. In conclusion, the transcription factors AP-1 and GATA are activated by p38 MAPK upon AngII stimulation, and both are needed to enhance TGF-beta1 expression in ventricular cardiomyocytes. TGF-beta1 acts in an autocrine loop on the cells to induce apoptosis via SMAD signaling. Thus, the often-found correlation between AngII, TGF-beta1, AP-1, and SMAD in pathogenesis of heart disease reflects the proapoptotic signaling pathway induced by AngII in cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app