Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of the analgesic and anti-inflammatory effects of a Brazilian green propolis.

Planta Medica 2006 August
Phamacological activities of a standard ethanol extract G1 from Brazilian green propolis, typified as BRP1, was evaluated in mouse models of pain and inflammation. Intraperitoneal injection ( I. P.) of G1 inhibited acetic acid-induced abdominal constrictions with an ID (50) = 0.75 +/- 0.05 mg/kg, and in the formalin test the ID (50) values were 0.85 +/- 0.07 mg/kg and 13.88 +/- 1.12 mg/kg, respectively, for the neurogenic and inflammatory phases. The extract was ineffective when assessed in the hot-plate assay. In serotonin-induced paw edema, G1 led to a maximal inhibition (MI) of 51.6 % after 120 min when administered I. P. and of 36 % after 15 min by the oral route ( O. R.). When the inflammatory agent was complete Freund's adjuvant, inhibition of paw edema was also observed after administration of the extract by both routes. In the capsaicin-induced ear edema the ID (50) values were 1.09 +/- 0.08 mg/kg ( I. P.) and 10.00 +/- 0.90 mg/kg ( O. R.). In the acute carrageenan-induced inflammatory reaction induced by carrageenan, G1 reduced the number of neutrophils in the peritoneal cavity with IC (50) values of 0.72 +/- 0.08 mg/kg and 4.17 +/- 0.50 mg/kg, by I. P. or O. R. administration, with a preferential migration of polymorphonuclear neutrophils. IN VITRO, G1 decreased nitric oxide production in LPS-stimulated RAW 264.7 cells (IC (50) = 41.60 microg/mL), and also the luciferase activity in TNF-alpha-stimulated HEK 293 cells transfected with NF-kappaB-luciferase reporter gene driven by the nuclear factor kappaB (NF-kappaB) (IC (50) = 200 microg/mL). This extract, which at low concentrations induces anti-inflammatory and analgesic effects in mouse models, presents a high content of flavonoids, known to inhibit inducible NOS (iNOS) activity. These data taken together led us to reinforce the hypothesis in the literature that the anti-inflammatory effect of propolis may be a due to inhibition of iNOS gene expression, through interference with NF-kappaB sites in the iNOS promoter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app