Add like
Add dislike
Add to saved papers

Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway.

Cellular Signalling 2006 December
Ovarian cancer is the leading cause of death from gynecological malignancy for women. The amplification of the PI3K catalytic subunit (p110alpha) and the lost function of PTEN are frequently detected in ovarian cancer cells. PI3K plays an important role in tumorigenesis. To specifically inhibit PI3K activity in ovarian cancer cells, we constructed small interfering RNA (siRNA) against p110alpha. The expression of p110alpha siRNA significantly decreased cell migration, invasion, and proliferation compared to the siSCR control cells. The expression of p110alpha siRNA induced CDK inhibitor p27(KIP1) levels, and decreased levels of cyclin D1, CDK4, and phosphorylated retinoblastoma protein. PI3K transmits the mytogenic signal through AKT. AKT has three isoforms in the cells: AKT1, AKT2 and AKT3. We found that inhibition of AKT1 is sufficient to affect cell migration, invasion, and proliferation. Expression of AKT1 siRNA had a similar effect as p110alpha siRNA in the cells. We showed the roles of specific PI3K and AKT isoforms in the cells, which are important to understanding the mechanism of PI3K/AKT signaling in ovarian cancer cells. Both p110alpha and AKT1 siRNA-expressing cells decreased the activation of p70S6K1. Inhibition of p70S6K1 activity by its siRNA also decreased cell migration, invasion, and proliferation associated with the induction of p27(KIP1) levels, and with the inhibition of cell cycle-associated proteins including cyclin D1, CDK2, and phosphorylated retinoblastoma protein. This study demonstrates the important role of the PI3K/AKT/mTOR/p70S6K1 pathway in cell proliferation, migration, and invasion in ovarian cancer cells by using siRNA-mediated gene silencing as a reverse genetic method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app