Controlled Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli.

Pain 2006 December 5
Variations in the gene encoding catechol-O-methyltransferase (COMT) are linked to individual differences in pain sensitivity. A single nucleotide polymorphism (SNP) in codon 158 (val(158)met), which affects COMT protein stability, has been associated with the human experience of pain. We recently demonstrated that three common COMT haplotypes, which affect the efficiency of COMT translation, are strongly associated with a global measure of pain sensitivity derived from individuals' responses to noxious thermal, ischemic, and pressure stimuli. Specific haplotypes were associated with low (LPS), average (APS), or high (HPS) pain sensitivity. Although these haplotypes included the val(158)met SNP, a significant association with val(158)met variants was not observed. In the present study, we examined the association between COMT genotype and specific pain-evoking stimuli. Threshold and tolerance to thermal, ischemic, and mechanical stimuli, as well as temporal summation to heat pain, were determined. LPS/LPS homozygotes had the least, APS/APS homozygotes had average, and APS/HPS heterozygotes had the greatest pain responsiveness. Associations were strongest for measures of thermal pain. However, the rate of temporal summation of heat pain did not differ between haplotype combinations. In contrast, the val(158)met genotype was associated with the rate of temporal summation of heat pain, but not with the other pain measures. This suggests that the val(158)met SNP plays a primary role in variation in temporal summation of pain, but that other SNPs of the COMT haplotype exert a greater influence on resting nociceptive sensitivity. Here, we propose a mechanism whereby these two genetic polymorphisms differentially affect pain perception.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app