Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modeling the calcium gate of cardiac gap junction channel.

We addressed the question how Ca2+ transients affect gap junction conductance (Gj) during action potential (AP) propagation by constructing a dynamic gap junction model coupled with a cardiac cell model. The kinetics of the Ca2+ gate was determined based on published experimental findings that the Hill coefficient for the [Ca2+]i-Gj relationship ranges from 3 to 4, indicating multiple ion bindings. It is also suggested that the closure of the Ca2+ gate follows a single exponential time course. After adjusting the model parameters, a two-state (open-closed) model, assuming simultaneous ion bindings, well described both the single exponential decay and the [Ca2+]i-Gj relationship. Using this gap junction model, 30 cardiac cell models were electrically connected in a one-dimensional cable. However, Gj decreased in a cumulative manner by the repetitive Ca2+ transients, and a conduction block was observed. We found that a reopening of the Ca2+ gate is possible only by assuming a sequential ion binding with one rate limiting step in a multistate model. In this model, the gating time constant (T) has a bell-shaped dependence on [Ca2+]i, with a peak around the half-maximal concentration of [Ca2+]i. Here we propose a five-state model including four open states and one closed state, which allows normal AP propagation; namely, the Gj is decreased -15% by a single Ca2+ transient, but well recovers to the control level during diastole. Under the Ca(2+)-overload condition, however, the conduction velocity is indeed decreased as demonstrated experimentally. This new gap junction model may also be useful in simulations of the ventricular arrhythmia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app