Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulation of human tyrosine hydroxylase gene by neuron-restrictive silencer factor.

Tyrosine hydroxylase (TH), the biosynthetic enzyme of catecholamine, is synthesized specifically in catecholaminergic neurons. Thus, it is possible that neuronal cell type-specific expression of this gene is coordinately regulated. One of the neuron-specific transcription regulators, neuron-restrictive silencer factor (NRSF)/repressor element 1 (RE1) silencing transcription factor (REST), represses the expression of neuronal genes in non-neuronal cells. To elucidate the molecular mechanisms that control catecholaminergic neuronal expression of human TH, we initially characterized the 5' regulatory region. Previous studies have shown that a 3174 bp fragment of the human TH promoter confers specific expression to the reporter gene in dopaminergic neuron-like cell lines. Within this 5' regulatory region, three putative neuron-restrictive silencer elements (NRSE)/RE1 were identified, which bound NRSF/REST in a sequence-specific manner, as confirmed using EMSA and ChIP assays. In transient transfection assays, deletion or mutation of NRSE/RE1 elements led to a 7-fold increase in activity of the 3.2 kb TH promoter in human neural stem cells (NSCs), but had no major effects on differentiated neuron-like cells. Suppression of NRSF/REST functions with either the histone deacetylase inhibitor, trichostatin, or DN-NRSF induced TH promoter activity. Our data strongly suggest that NRSF/REST functions as a repressor of TH transcription in NSCs via a mechanism dependent on the TH NRSE/RE1 sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app