JOURNAL ARTICLE
REVIEW

Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer

Peter Lind, Susanne Kohlfürst
Seminars in Nuclear Medicine 2006, 36 (3): 194-205
16762610
Depending on the iodine supply of an area, the incidence of thyroid cancer ranges between 4 and 12/100,000 per year. To detect thyroid cancer in an early stage, the assessment of thyroid nodules includes ultrasonography, ultrasonography-guided fine-needle aspiration biopsy, and conventional scintigraphic methods using (99m)Tc-pertechnetate, (99m)Tc-sestamibi or -tetrofosmin, and (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) in selected cases. After treatment of thyroid cancer, a consequent follow-up is necessary over a period of several years. For following up low-risk patients, recombinant thyroid-stimulating hormone-stimulated thyroglobulin and ultrasonography is sufficient in most cases. After total thyroidectomy and radioiodine ablation therapy, thyroid-stimulating hormone-stimulated thyroglobulin should be below the detection limit (eg, <0.5 ng/mL, R: 70-130). An increase of thyroglobulin over time is suspicious for recurrent or metastatic disease. Especially in high-risk patients, aside from the use of ultrasonography for the detection of local recurrence and cervial lymph node metastases, nuclear medicine methods such as radioiodine imaging and FDG-PET are the methods of choice for localizing metastatic disease. Radioiodine imaging detects well-differentiated recurrences and metastases with a high specificity but only moderate sensitivity. The sensitivity of radioiodine imaging depends on the activity administered. Therefore a low activity diagnostic (131)I whole-body scan (74-185 MBq) has a lower detection rate than a high activity post-therapy scan (3700-7400 MBq). In patients with low or dedifferentiated thyroid cancer and after several courses of radioiodine therapy caused by metastatic disease, iodine negative metastases may develop. In these cases, despite clearly elevated levels of thyroglobulin, radioiodine imaging is negative or demonstrates only faint iodine uptake. The method of choice to image these iodine negative metastases is FDG-PET. In recent years the combination of PET and computed tomography has been introduced. The fusion of the metabolic and morphologic information was able to increase the diagnostic accuracy, reduces pitfalls and changes therapeutic strategies in a reasonable number of patients.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16762610
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"