JOURNAL ARTICLE

Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients

Caroline Holm, Suresh Rayala, Karin Jirström, Olle Stål, Rakesh Kumar, Göran Landberg
Journal of the National Cancer Institute 2006 May 17, 98 (10): 671-80
16705121

BACKGROUND: p21-activated kinase 1 (Pak1) phosphorylates many proteins in both normal and transformed cells. Its ability to phosphorylate and thereby activate the estrogen receptor alpha (ERalpha) potentially limits the effectiveness of antiestrogen treatment in breast cancer. Here we studied associations between Pak1 expression and subcellular localization in tumor cells and tamoxifen resistance.

METHODS: Pak1 protein expression was evaluated in 403 primary breast tumors from premenopausal patients who had been randomly assigned to 2 years of adjuvant tamoxifen or no treatment. Tamoxifen response was evaluated by comparing recurrence-free survival in relation to Pak1 and ERalpha expression in untreated versus tamoxifen-treated patients. Tamoxifen responsiveness of human MCF-7 breast cancer cells that inducibly expressed constitutively active Pak1 or that transiently overexpressed wild-type Pak1 (Wt-Pak1) or Pak1 that lacked functional nuclear localization signals (Pak1DeltaNLS) was evaluated by analyzing cyclin D1 promoter activation and protein levels as markers for ERalpha activation. The response to tamoxifen in relation to Pak1 expression was analyzed in naturally tamoxifen-resistant Ishikawa human endometrial cancer cells. All statistical tests were two-sided.

RESULTS: Among patients who had ERalpha-positive tumors with low Pak1 expression, those treated with tamoxifen had better recurrence-free survival than those who received no treatment (hazard ratio [HR] = 0.502, 95% confidence interval [CI] = 0.331 to 0.762; P = .001) whereas there was no difference in recurrence-free survival between treatment groups for patients whose tumors had high cytoplasmic (HR = 0.893, 95% CI = 0.420 to 1.901; P = .769) or any nuclear Pak1 expression (HR = 0.955, 95% CI = 0.405 to 2.250; P = .916). In MCF-7 cells, overexpression of Wt-Pak1, but not of Pak1DeltaNLS, compromised tamoxifen response by stimulating cyclin D1 expression. Treatment of Ishikawa cells with tamoxifen led to an increase in the amount of nuclear Pak1 and Pak1 kinase activity, suggesting that tamoxifen, to some extent, regulates Pak1 expression.

CONCLUSIONS: Our data support a role for Pak1, particular Pak1 localized to the nucleus, in ERalpha signaling and in tamoxifen resistance.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16705121
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"