Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore.

In order to further explore the mechanisms by which activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) confers neuroprotection, we investigated the role of the mitochondrial permeability transition pore (MPTP) in in vivo and in vitro models. Adult male Sprague-Dawley rats were exposed to 90 min of middle cerebral artery occlusion (MCAO) followed by reperfusion for 22 h, when neurological scores and infarct volumes were evaluated. Activating mitoKATP by infusion of 2 mmol/L diazoxide into the ventricles 20 min before MCAO or inhibiting the MPTP by infusion of 1 micromol/L cyclosporin A 15 min before reperfusion significantly increased functional score and reduced infarction volume. Subsequent intracerebroventricular infusion of 2 mmol/L atractyloside, the MPTP opener, 10 min before reperfusion significantly attenuated the neuroprotective effects of diazoxide and cyclosporin A. The swelling of mitochondria isolated from brain was evaluated by spectrophotometry and served as a measure of MPTP opening. In isolated mitochondria, 100 micromol/L atractyloside attenuated the decrease of mitochondrial swelling induced by 30 micromol/L diazoxide or cyclosporin A (0.5 or 1 micromol/L). Furthermore, 100 micromol/L diazoxide or 1 micromol/L cyclosporin A both attenuated the fluorescence intensity in isolated mitochondria loaded with rhod-2 acetoxymethylester, and 100 micromol/L atractyloside abolished the effects of diazoxide and cyclosporin A. These results suggest that activation of mitoKATP protects the brain against injury, and this is probably mediated by attenuating mitochondrial Ca2+ overload and thus inhibiting MPTP opening during brain ischemia and reperfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app