Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes.

The initial stages of diabetic nephropathy are characterized by glomerular hyperfiltration and hypertension, processes that have been linked to initiation and progression of renal disease. Renin angiotensin system (RAS) blockade is commonly used to modify the hyperfiltration state and delay progression of renal disease. Despite this therapy, many patients progress to ESRD, suggesting heterogeneity in the response to RAS modulation. The role of the RAS in the hyperfiltration state in adolescents with uncomplicated type 1 diabetes was examined, segregated on the basis of the presence of hyperfiltration. Baseline renal hemodynamic function was characterized in 22 patients. Eleven patients exhibited glomerular hyperfiltration (GFR>or=135 ml/min), and in the remaining 11 patients, the GFR was <130 ml/min. Renal hemodynamic function was assessed in response to a graded angiotensin II (AngII) infusion during euglycemic conditions and again after 21 d of angiotensin-converting enzyme (ACE) inhibition with enalapril. AngII infusion under euglycemic conditions resulted in a significant decline in GFR and renal plasma flow in the hyperfiltration group but not in the normofiltration group. After ACE inhibition, GFR fell but did not normalize in the hyperfiltration group; the normofiltration group showed no change. These data show significant differences in renal hemodynamic function between hyperfiltering and normofiltering adolescents with type 1 diabetes at baseline, after AngII infusion and ACE inhibition. The response to ACE inhibition and AngII in hyperfiltering patients suggests that vasodilation may complement RAS activation in causing the hyperfiltration state. The interaction between glomerular vasoconstrictors and vasodilators requires examination in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app