Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability.

OBJECTIVES: Vascular endothelial growth factor (VEGF) plays an important role in the regulation of microvascular permeability under various physiological and pathological conditions. The authors tested the hypothesis that the small GTPase Rho and its downstream effector ROCK (Rho-associated coiled-coil-containing protein kinase) mediate VEGF-induced increases in venular permeability. They also investigated myosin light chain (MLC) phosphorylation and actin polymerization, two well-characterized targets of the Rho-ROCK pathway that are implicated in the regulation of endothelial barrier function.

METHODS: The apparent permeability coefficient of albumin (P(a)) was measured in intact isolated porcine coronary venules and in cultured coronary venular endothelial cell (CVEC) monolayers. RhoA activation was determined using a Rhotekin-agarose pull down assay. MLC phosphorylation was evaluated by immunoblotting with phospho-specific antibodies, and endothelial cellular F-actin was viewed using fluorescence microscopy.

RESULTS: VEGF increased P(a) in both isolated coronary venules and CVEC monolayers. The hyperpermeability response occurred in a similar time course to that of Rho activation, MLC phosphorylation, and actin stress fiber formation. Selective blockage of ROCK with Y27632 dose-dependently inhibited VEGF-induced venular hyperpermeability. Moreover, inhibition of either Rho with exoenzyme C3 or ROCK with Y-27632 attenuated VEGF-induced increases in permeability, MLC phosphorylation, and actin-stress fiber formation in CVEC monolayers.

CONCLUSIONS: Collectively, these findings suggest that the Rho-ROCK signal pathway contributes to VEGF-induced hyperpermeability. Myosin light-chain phosphorylation and actin stress fiber formation occur concomitantly with the increase in permeability upon VEGF stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app