Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein.

Recently, we have shown that green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) exerts a beneficial role on reducing brain Abeta levels, resulting in mitigation of cerebral amyloidosis in a mouse model of Alzheimer disease. EGCG seems to accomplish this by modulating amyloid precursor protein (APP) processing, resulting in enhanced cleavage of the alpha-COOH-terminal fragment (alpha-CTF) of APP and corresponding elevation of the NH(2)-terminal APP product, soluble APP-alpha (sAPP-alpha). These beneficial effects were associated with increased alpha-secretase cleavage activity, but no significant alteration in beta-or gamma-secretase activities. To gain insight into the molecular mechanism whereby EGCG modulates APP processing, we evaluated the involvement of three candidate alpha-secretase enzymes, a-disintegrin and metalloprotease (ADAM) 9, 10, or 17, in EGCG-induced non-amyloidogenic APP metabolism. Results show that EGCG treatment of N2a cells stably transfected with "Swedish" mutant human APP (SweAPP N2a cells) leads to markedly elevated active ( approximately 60 kDa mature form) ADAM10 protein. Elevation of active ADAM10 correlates with increased alpha-CTF cleavage, and elevated sAPP-alpha. To specifically test the contribution of ADAM10 to non-amyloidogenic APP metabolism, small interfering RNA knockdown of ADAM9, -10, or -17 mRNA was employed. Results show that ADAM10 (but not ADAM9 or -17) is critical for EGCG-mediated alpha-secretase cleavage activity. In summary, ADAM10 activation is necessary for EGCG promotion of non-amyloidogenic (alpha-secretase cleavage) APP processing. Thus, ADAM10 represents an important pharmacotherapeutic target for the treatment of cerebral amyloidosis in Alzheimer disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app