Add like
Add dislike
Add to saved papers

EELS study of niobium carbo-nitride nano-precipitates in ferrite.

Micron 2006
Micro-alloying steels allow higher strength to be achieved, with lower carbon contents, without a loss in toughness, weldability or formability through the generation of a fine ferrite grain size with additional strengthening being provided by the fine scale precipitation of complex carbo-nitride particles. Niobium is reported to be the most efficient micro-alloying element to achieve refinement of the final grain structure. A detailed microscopic investigation is one of the keys for understanding the first stages of the precipitation sequence, thus transmission electron microscopy (TEM) is required. Model Fe-(Nb,C) and Fe-(Nb,C,N) ferritic alloys have been studied after annealing under isothermal conditions. However the nanometre scale dimensions of the particles makes their detection, structural and chemical characterization delicate. Various imaging techniques have then been employed. Conventional TEM (CTEM) and high resolution TEM (HRTEM) were used to characterise the morphology, nature and repartition of precipitates. Volume fractions and a statistical approach to particle size distributions of precipitates have been investigated by energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) imaging. Great attention was paid to the chemical analysis of precipitates; their composition has been quantified by electron energy loss spectroscopy (EELS), on the basis of calibrated 'jump-ratios' of C-K and N-K edges over the Nb-M edge, using standards of well-defined compositions. It is shown that a significant addition of nitrogen in the alloy leads to a complex precipitation sequence, with the co-existence of two populations of particles: pure nitrides and homogeneous carbo-nitrides respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app