Clinical Trial
Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Oxygen uptake kinetics during supra VO2max treadmill running in humans.

Accurate classification of VO2 kinetics is essential to correctly interpret its control mechanisms. The purpose of this study was to examine VO2 kinetics in severe and supra-maximal intensity running exercise using two modelling techniques. Nine subjects (mean +/- S.D: age, 27 +/- 7 years; mass, 69.8 +/- 9.0 kg; VO2max, 59.1 +/- 1.8 mL x kg x min(-1)) performed a series of "square-wave" exercise transitions to exhaustion at running speeds equivalent to 80% of the difference between the VO2 at LT and VO2max (delta), and at 100%, 110% and 120% VO2max. The VO2 response was modelled with an exponential model and with a semi-logarithmic transformation, the latter assuming a certain steady state VO2. With the exponential model there was a significant reduction in the "gain" of the primary component in supra-maximal exercise (167 +/- 5 mL x kg(-1) x km(-1) at 80% delta to 142 +/- 5 mL x kg(-1) x km(-1) at 120% VO2max, p = 0.005). The time constant of the primary component also reduced significantly with increasing intensity (17.8 +/- 1.1 s at 80% delta to 12.5 +/- 1.2 s at 120% VO2max, p < 0.05). However, in contrast, using the semi-log model, the time constant significantly increased with intensity (30.9 +/- 13.5 s at 80% delta to 72.2 +/- 23.9 s at 120% VO2max, p < 0.05). Not withstanding the need for careful interpretation of mathematically modelled data, these results demonstrate that neither the gain nor the time constant of the VO2 primary component during treadmill running are invariant across the severe and supra-maximal exercise intensity domains when fit with an exponential model. This suggests the need for a reappraisal of the VO2/work rate relationship in running exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app