Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications.

OBJECTIVE: The objective of this study was to examine the applicability of high magnetic field strengths for comprehensive functional and structural cardiac magnetic resonance imaging (MRI).

SUBJECTS AND METHODS: Eighteen subjects underwent comprehensive cardiac MRI at 1.5 T and 3.0 T. The following imaging techniques were implemented: double and triple inversion prepared FSE for anatomic imaging, 4 different sets of echocardiographic-gated CINE strategies for functional and flow imaging, inversion prepared gradient echo for delayed enhancement imaging, T1-weighted segmented EPI for perfusion imaging and 2-dimensional (2-D) spiral, and volumetric SSFP for coronary artery imaging.

RESULTS: : Use of 3 Tesla as opposed to 1.5 Tesla provided substantial baseline signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) improvements for anatomic (T1-weighted double IR: DeltaSNR = 29%, DeltaCNR = 20%, T2-weighted double IR: DeltaSNR = 39%, DeltaCNR = 33%, triple IR: DeltaSNR = 74%, DeltaCNR = 60%), functional (conventional CINE: DeltaSNR = 123%, DeltaCNR = 74%, accelerated CINE: DeltaSNR = 161%, DeltaCNR = 86%), myocardial tagging (DeltaSNRsystole = 54%, DeltaCNRsystole = 176%), phase contrast flow measurements (DeltaSNR = 79%), viability (DeltaSNR = 48%, DeltaCNR = 40%), perfusion (DeltaSNR = 109%, DeltaCNR = 87%), and breathhold coronary imaging (2-D spiral: DeltaSNRRCA = 54%, DeltaCNRRCA = 69%, 3-D SSFP: DeltaSNRRCA = 60%, DeltaCNRRCA = 126%), but also revealed image quality issues, which were successfully tackled by adiabatic radiofrequency pulses and parallel imaging.

CONCLUSIONS: Cardiac MRI at 3.0 T is feasible for the comprehensive assessment of cardiac morphology and function, although SAR limitations and susceptibility effects remain a concern. The need for speed together with the SNR benefit at 3.0 T will motivate further advances in routine cardiac MRI while providing an image-quality advantage over imaging at 1.5 Tesla.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app