Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion.

Matrix metalloproteinase (MMP) inhibitory proteins may negatively regulate MMP activity to suppress tumor metastasis. In this study, we demonstrate that the HER-2/neu oncogene inhibits the expression of the MMP inhibitor RECK to promote cell invasion. RECK was inhibited via transcriptional repression in B104-1-1 cells, which express constitutively active HER-2/neu. Overexpression of HER-2/neu in NIH/3T3 or HaCaT cells also suppressed RECK expression. Deletion and mutation assays showed that HER-2/neu repressed RECK via the Sp1-binding site localized in the -82/-71 region from the translational start site. DNA affinity precipitation and chromatin immunoprecipitation assays indicated that binding of Sp1 and Sp3 to this consensus site was increased in B104-1-1 cells. We also found that HER-2/neu inhibited RECK via the ERK signaling pathway. Sp1 proteins phosphorylated at Thr453 and Thr739 by ERK bound preferentially to the RECK promoter, and this binding was reversed by HER-2/neu and ERK inhibitors. Furthermore, our data indicate that HER-2/neu obviously increased HDAC1 binding to the Sp1-binding site localized in the -82/-71 region of the RECK promoter. The histone deacetylase inhibitor trichostatin A reversed HER-2/neu-induced inhibition of RECK. HER-2/neu activation was associated with increased MMP-9 secretion and activation. Re-expression of RECK in HER-2/neu-overexpressing cells inhibited MMP-9 secretion and cell invasion. Taken together, our results suggest that HER-2/neu induces the binding of Sp proteins and HDAC1 to the RECK promoter to inhibit RECK expression and to promote cell invasion. Restoration of RECK provides a novel strategy for the inhibition of HER-2/neu-induced metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app