Clinical Trial
Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans.

The work of breathing required during maximal exercise compromises blood flow to limb locomotor muscles and reduces exercise performance. We asked if force output of the inspiratory muscles affected exercise-induced peripheral fatigue of locomotor muscles. Eight male cyclists exercised at > or = 90% peak O2 uptake to exhaustion (CTRL). On a separate occasion, subjects exercised for the same duration and power output as CTRL (13.2 +/- 0.9 min, 292 W), but force output of the inspiratory muscles was reduced (-56% versus CTRL) using a proportional assist ventilator (PAV). Subjects also exercised to exhaustion (7.9 +/- 0.6 min, 292 W) while force output of the inspiratory muscles was increased (+80%versus CTRL) via inspiratory resistive loads (IRLs), and again for the same duration and power output with breathing unimpeded (IRL-CTRL). Quadriceps twitch force (Q(tw)), in response to supramaximal paired magnetic stimuli of the femoral nerve (1-100 Hz), was assessed pre- and at 2.5 through to 70 min postexercise. Immediately after CTRL exercise, Q(tw) was reduced -28 +/- 5% below pre-exercise baseline and this reduction was attenuated following PAV exercise (-20 +/- 5%; P < 0.05). Conversely, increasing the force output of the inspiratory muscles (IRL) exacerbated exercise-induced quadriceps muscle fatigue (Q(tw) = -12 +/- 8% IRL-CTRL versus-20 +/- 7% IRL; P < 0.05). Repeat studies between days showed that the effects of exercise per se, and of superimposed inspiratory muscle loading on quadriceps fatigue were highly reproducible. In conclusion, peripheral fatigue of locomotor muscles resulting from high-intensity sustained exercise is, in part, due to the accompanying high levels of respiratory muscle work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app