Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Study of the localization of iron, ferritin, and hemosiderin in Alzheimer's disease hippocampus by analytical microscopy at the subcellular level.

Previous studies of the structure of core nanocrystals of ferritin (Ft) in the brains of patients with Alzheimer's disease (AD) have shown differences in the mineral compound in comparison with physiological Ft. Both Ft cores have a polyphasic composition but whereas the major phase in physiological Ft is hexagonal ferric iron oxide (ferrihydrite), the major phases in brain AD Ft are two cubic mixed ferric-ferrous iron oxides (magnetite and wüstite). One of these (wüstite) is similar to what is detected in hemosiderin (Hm) cores in primary hemochromatosis (Quintana, C., Cowley, J.M, Marhic, C., 2004. Electron nanodiffraction and high resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin. J. Struct. Biol. 147, 166-178). We have studied, herein, the distribution of iron, Ft, and Hm in sections of AD hippocampus using analytical microscopy. Iron present in Ft cores was directly mapped in a nanoSIMS microscope and the iron distribution has been correlated with the constituent elements N, P, and S. Ft and Hm cores were visualized at an ultrastructural level in an analytical transmission electron microscope. In senile plaques, Ft was observed in the coronal region associated with a non-beta-amyloid component and in the periphery of plaques, together with Hm, in sulfur-rich dense bodies of dystrophic neurites. Hm was also found in lysosomes and siderosomes of glial cells. Ft was observed in the cytoplasm and nucleus of oligodendrocytes. Ft was particularly abundant in myelinated axons in association with oligodendrocyte processes. These findings provide new arguments to support the hypothesis of a dysfunction of Ft (with eventual degradation to Hm) in AD resulting in an increase of toxic brain ferrous ions that may contribute to the production of free radicals that induce both cellular oxidative stress and aged-related myelin breakdown associated with cognitive decline and AD (Bartzokis, G., 2004. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol. Aging 25, 5-18).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app