Clinical Trial, Phase II
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Gene expression patterns for doxorubicin (Adriamycin) and cyclophosphamide (cytoxan) (AC) response and resistance.

INTRODUCTION: Doxorubicin and cyclophosphamide (Adriamycin/cytoxan, AC) is a standard chemotherapy regimen for breast cancer, but de novo resistance is frequent. We hypothesized that gene expression profiles predictive of AC response may be different from our previously published patterns with docetaxel.

METHODS: Core biopsies from 40 patients were obtained before treatment with AC (6 cycles, 60/600 mg/m2q3 weeks), and clinical responses recorded after treatment. Gene expression patterns were analyzed using Affymetrix U133A chips which comprise approximately 22,200 genes.

RESULTS: Clinical complete responses (cCR) were observed in 22, partial responses in 7, stable disease in 11 patients. Differential expression between sensitive cCR and resistant tumors with a low false discovery rate (< 5%) was obtained. Of these 253 differentially expressed genes, pathways up-regulated in sensitive tumors included cell cycle (BUB3, CDKN1B), survival (BCL2, BAG1, BIRC1, STK39), stress response (CYP2B6, MAPK14), and estrogen-related pathways (ER, IRS1). Resistant tumors expressed gene promoting transcription (GTF3C1, ILF3), differentiation (ST14, CTNNBIP1), signal transduction (EIF1AX, EIF4EBP1), and amino acid metabolism (SRM, PLOD1, PLOD3). With leave-one-out cross validation, 67% of the samples were correctly classified, with a permutation p-value of 0.4. The previously published 92-gene molecular portrait for docetaxel sensitivity could not discriminate AC sensitivity and resistance.

CONCLUSIONS: This preliminary study supports that molecular profiles for AC response are likely to exist, with unique expression patterns for individual chemotherapy regimens. Larger validation studies are necessary to define and refine patterns for different agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app