Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Selection for phenotypic divergence between diploid and autotetraploid Heuchera grossulariifolia.

Much of the diversity of flowering plants is associated with genomic duplication through polyploidy. Little is known, however, about the evolutionary mechanisms responsible for the diversification of novel polyploid lineages. We evaluated the possibility that divergence is driven by natural selection by estimating the strength of phenotypic selection acting on three floral traits in sympatric populations of diploid and autotetraploid Heuchera grossulariifolia over three years. Our results demonstrate consistent directional selection for increasing scape length and floral display in both diploid and tetraploid populations. In contrast, selection acting on flowering phenology varied across year and ploidy. Specifically, selection was found to favor late-flowering diploids in 2001 and 2002 but early-flowering tetraploids in 2003. We investigated the mechanistic basis of divergent selection for flowering phenology in 2003 by estimating the relationship between plant flowering phenology and the probability of intercytotype pollinator movement. The results demonstrated that less divergent tetraploids were significantly more likely to experience intercytotype flights than were more divergent tetraploids. This result is consistent with the pattern of phenotypic selection observed. Taken together, our results suggest that divergence of polyploids and their diploid progenitors may be driven by a process analogous to reinforcement whereby selection favors phenotypes that reduce the probability of intercytotype matings with reduced fertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app