Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Combined angiotensin II type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries.

Hypertension 2005 September
We investigated the role of angiotensin II type 1 (AT1) and AT2 receptors, matrix metalloproteinases (MMPs), and extracellular matrix (ECM) components involved in vascular remodeling of resistance arteries induced by angiotensin II (Ang II). Sprague-Dawley rats received Ang II (120 ng/kg per minute SC) +/- the AT1 antagonist losartan (10 mg/kg per day PO), the AT1/AT2 antagonist Sar1-Ile8-Ang II (Sar-Ile; 10 microg/kg per minute SC), or hydralazine (25 mg/kg per day PO) for 7 days. Structure and mechanical properties of small mesenteric arteries were evaluated on a pressurized myograph. Ang II increased growth index (+21%), which was partially decreased by losartan (-11%) and abrogated by Sar-Ile. Hydralazine markedly increased growth index (+32%) despite systolic blood pressure (BP) lowering, suggesting a BP-independent effect of Ang II on vascular growth. Elastic modulus was increased by Sar-Ile compared with Ang II and control. Vascular type I collagen was reduced (P<0.05), whereas fibronectin increased significantly with Sar-Ile. Vascular tissue inhibitor of metalloproteinase-2 binding to MMP-2 was abrogated by Sar-Ile, but MMP-2 activity was significantly increased compared with losartan, Ang II, and controls. Thus, AT1 blockade exerted antigrowth effects and reduced stiffness of small resistance arteries by decreasing nonelastic fibrillar components (collagen and fibronectin). Concomitant AT1/AT2 blockade prevented growth, reduced collagen type I and elastin deposition but increased vascular stiffness, fibronectin, and MMP-2 activity. These results demonstrate opposing roles of AT1 receptors that increase fibronectin and vascular stiffness and AT2 receptors that decrease MMP-2 and increase elastin. Changes in vascular wall mechanics, ECM deposition, and MMP activity are thus modulated differentially by Ang II receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app