Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Advanced glycation end product free adducts are cleared by dialysis.

Plasma advanced glycation end product (AGE) free adducts are increased up to 50-fold among patients on dialysis. We examined the ability of hemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD) to clear these compounds. The AGE free adducts Nepsilon-carboxymethyl-lysine (CML) and Nepsilon-(1-carboxyethyl)lysine (CEL) and the hydroimidazolones derived from glyoxal (G-H1), methylglyoxal (MG-H1), and 3-deoxyglucosone (3DG-H) were determined by LC-MS/MS and pentosidine by HPLC with fluorimetric detection in ultrafiltrates of plasma, urine, or PD effluent as appropriate from patients on HD (n = 8) or PD (n = 8), and from healthy controls (n = 8). Among patients on HD, all free AGEs predialysis were significantly higher than in controls and were decreased with dialysis. The removal of MG-H1 and 3DG-H was comparable to that of urea, whereas that of CML and pentosidine was some 20% higher; in contrast, the removal of CEL and G-H1 was 25% lower. Among patients on CAPD, free AGEs in PD effluent increased with increasing dwell time. The combined renal and peritoneal 24-h excretion rates of CML (4.7 micromol), CEL (6.5 micromol), 3DG-H (16.6 micromol), and pentosidine (0.08 micromol) were twofold higher than the amount excreted in healthy controls, whereas MG-H1 was ninefold higher (59 micromol); the combined clearances of all free AGEs except pentosidine were lower than in healthy controls. Impaired renal clearance contributes to increased plasma free AGEs in uremia, but the increased excretion rate among patients on PD demonstrates that there was also an increased synthesis of free AGEs. Both HD and PD are able to remove free AGEs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app