Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice.

Accumulating evidence indicates that glial cells are actively involved in the pathogenesis of Alzheimer's disease. We recently reported protective effects of long-term administration of ferulic acid against learning and memory deficit induced by centrally administered beta-amyloid peptide (Abeta)1-42 in mice. In that report, we found that the Abeta1-42-induced increases in immunoreactivities of glial fibrillary acidic protein, the astrocyte marker, and interleukin(IL)-1beta in the hippocampus are also suppressed by pretreatment with ferulic acid. In the present study, we aimed to further characterize the effect of long-term administration of ferulic acid on the centrally administered Abeta1-42-induced activation of glial cells in mice. Mice were allowed free access to drinking water (control) or water containing ferulic acid (0.006%) for 4 weeks, and then Abeta1-42 (410 pmol) was administered via intracerebroventricular injection. Intracerebroventricularly injected Abeta1-42 induced an increase in immunoreactivities of endothelial nitric oxide synthase (eNOS) and 3-nitrotyrosine (3-NT) in the activated astrocytes in the hippocampus. Pretreatment of ferulic acid for 4 weeks prevented the Abeta1-42-induced increase in eNOS and 3-NT immunoreactivities. Administration of ferulic acid per se induced a transient and slight increase in eNOS immunoreactivity in the hippocampus on day 14, which returned to basal levels on day 28. Intracerebroventricularly injected Abeta1-42 also increased interleukin-1alpha(IL-1alpha) immunoreactivity in the hippocampus, which was also suppressed by pretreatment with ferulic acid. These results demonstrate that long-term administration of ferulic acid induces suppression of the centrallly injected Abeta1-42-induced activation of astrocytes which is suggested to underlie the protective effect of ferulic acid against Abeta1-42 toxicity in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app