Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Sp1 and AP2 enhance promoter activity of the mouse GM3-synthase gene.

Gene 2005 May 24
Promoters of the glycosyltransferase genes for ganglioside synthesis are TATA-less and often have multiple binding sites for transcription factors Sp1 and AP2 in their proximal regions. However, the function of Sp1 and AP2 in the promoters has not yet been defined. Here, we cloned 5'-flanking fragments of the mouse GM3-synthase gene and assessed the promoter activity of these fragments in mouse Neuro-2a cells. This promoter is TATA-less and contains a number of potential transcription factor-binding sites. Multiple putative transcriptional initiation sites for this gene were identified, including several downstream initiation sites. We then set out to dissect the regulatory elements important for GM3-synthase promoter function. We found that a 5'-flanking 254-bp DNA fragment of the gene contained regulatory elements including two Sp1-binding and six AP2-binding sites that were essential for the basal activity of the promoter in mouse Neuro-2a cells. The effects of the individual Sp1- and AP2-binding sites on basal activity of the GM3-synthase gene were investigated. Mutations in the juxtaposed Sp1/AP2-binding site and in an AP2-binding site decreased the activity of the proximal promoter to approximately 50%. In vitro and in vivo interactions between transcription factors Sp1 and AP2 and these regulatory elements were confirmed by EMSA and the chromatin immunoprecipitation approach, respectively. Therefore, our results demonstrate that Sp1 and AP2 enhance the basal activity of the TATA-less mouse GM3-synthase promoter.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app