Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

O2 arterial desaturation in endurance athletes increases muscle deoxygenation.

PURPOSE: The aim of this study was to compare the muscle deoxygenation measured by near infrared spectroscopy in endurance athletes who presented or not with exercise-induced hypoxemia (EIH) during a maximal incremental test in normoxic conditions.

METHODS: Nineteen male endurance sportsmen performed an incremental test on a cycle ergometer to determine maximal oxygen consumption (VO2max) and the corresponding power output (P(max)). Arterial O2 saturation (SaO2) was measured noninvasively with a pulse oxymeter at the earlobe to detect EIH, which was defined as a drop in SaO2 > 4% between rest and the end of the exercise. Muscle deoxygenation of the right vastus lateralis was monitored by near infrared spectroscopy and was expressed in percentage according to the ischemia-hyperemia scale.

RESULTS: Ten athletes exhibited arterial hypoxemia (EIH group) and the nine others were nonhypoxemic (NEIH group). Training volume, competition level, VO2max, Pmax, and lactate concentration were similar in the two groups. Nevertheless, muscle deoxygenation at the end of the exercise was significantly greater in the EIH group (P < 0.05).

CONCLUSION: Greater muscle deoxygenation at maximal exercise in hypoxemic athletes seems to be due, at least in part, to reduced oxygen delivery--that is, exercise-induced hypoxemia--to working muscle added to the metabolic demand. In addition, our finding is also consistent with the hypothesis of greater muscle oxygen extraction in order to counteract reduced O2 availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app