Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber.

In certain mechanical heart valves, cavitation has been shown to develop during closure and rebound, leading to valve damage, blood damage, and strokes. Whereas it is uncertain what causes mechanical heart valve related strokes, some evidence suggests that stable bubbles may be the culprits. Previous work has indicated that vortex cavitation may contribute to stable bubble growth. Therefore, in an effort to understand the vortex cavitation, laser Doppler velocimetry data are collected in a plane parallel to and 3 mm away from the major orifice during closure and rebound of a Bjork-Shiley Monostrut mechanical heart valve. A modified single shot chamber is used that incorporates a more realistic near valve geometry than those used in previous studies. The results show the formation of a vortex during closure, which intensifies during rebound and dissipates during the final closing cycle. A regurgitant jet with mean velocities up to 3 m/s through the clearance gap of the valve provides energy to the vortex. During the final closing cycle, the vortex breaks up into asymmetrical, small scale flow patterns. This study provides further evidence that stable bubble formation may stem from the intense vortex cavitation occurring during valve closure and rebound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app