Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Black tea protects thymocytes in tumor-bearing animals by differential regulation of intracellular ROS in tumor cells and thymocytes.

The accumulated in vitro evidence indicates that many tumors induce T-cell apoptosis as a mechanism of inhibiting antitumor activity. This downregulation of cell-mediated immune functions occurring at the late stages of the disease may be causally related to the thymic involution, because the thymus is the major site of T-cell maturation, extensive proliferation, and differentiation. Our results showed that in Erhlich's ascites carcinoma cell (EAC)-bearing mice, the number of EAC was inversely proportional to the thymocyte count in the host's thymus, which is the primary immune organ. Further studies indicated the presence of tumor-induced thymocyte apoptosis in EAC bearers. Black tea prolonged the survival of the tumor bearer by successfully restricting tumor progression as well as protecting the thymus from tumor insult. In fact, black tea inhibited thymic apoptosis while inducing programmed cell death of EAC. Interestingly, the tea regulated the oxidant status differentially in EAC and thymocytes--i.e., it reduced the EAC-induced reactive oxygen species (ROS) generation in the thymus while activating the same in the EAC. A similar effect of black tea was obtained when thymocytes were cultured in the presence of cell-free ascitic fluid, thereby indicating that black tea could directly reduce oxidative stress, an activity independent of its tumoricidal property. As a result, the maturation block in thymocyte subpopulations in tumor bearers was ameliorated significantly in black tea-treated animals. Our results demonstrate that black tea protects thymocytes in the tumor bearer by regulating the intracellular ROS in tumor cells and thymocytes differentially, thereby strengthening its candidacy in future anticancer therapeutic regimens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app